Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate

نویسندگان

  • Rajat Rohatgi
  • Hsin-yi Henry Ho
  • Marc W. Kirschner
چکیده

Neuronal Wiskott-Aldrich Syndrome protein (N-WASP) transmits signals from Cdc42 to the nucleation of actin filaments by Arp2/3 complex. Although full-length N-WASP is a weak activator of Arp2/3 complex, its activity can be enhanced by upstream regulators such as Cdc42 and PI(4,5)P(2). We dissected this activation reaction and found that the previously described physical interaction between the NH(2)-terminal domain and the COOH-terminal effector domain of N-WASP is a regulatory interaction because it can inhibit the actin nucleation activity of the effector domain by occluding the Arp2/3 binding site. This interaction between the NH(2)- and COOH termini must be intramolecular because in solution N-WASP is a monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) influences the activity of N-WASP through a conserved basic sequence element located near the Cdc42 binding site rather than through the WASp homology domain 1. Like Cdc42, PI(4,5)P(2) reduces the affinity between the NH(2)- and COOH termini of the molecule. The use of a mutant N-WASP molecule lacking this basic stretch allowed us to delineate a signaling pathway in Xenopus extracts leading from PI(4, 5)P(2) to actin nucleation through Cdc42, N-WASP, and Arp2/3 complex. In this pathway, PI(4,5)P(2) serves two functions: first, as an activator of N-WASP; and second, as an indirect activator of Cdc42.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway.

The Wiskott-Aldrich syndrome protein (WASP) and its relative neural WASP (N-WASP) regulate the nucleation of actin filaments through their interaction with the Arp2/3 complex and are regulated in turn by binding to GTP-bound Cdc42 and phosphatidylinositol 4,5-bisphosphate. The Nck Src homology (SH) 2/3 adaptor binds via its SH3 domains to a proline-rich region on WASP and N-WASP and has been im...

متن کامل

WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement.

Reorganization of cortical actin filaments plays critical roles in cell movement and pattern formation. Recently, the WASP and WAVE family proteins WASP and N-WASP, and WAVE1, WAVE2 and WAVE3 have been shown to regulate cortical actin filament reorganization in response to extracellular stimuli. These proteins each have a verprolin-homology (V) domain, cofilin-homology (C) domain and an acidic ...

متن کامل

Activation by Cdc42 and Pip2 of Wiskott-Aldrich Syndrome Protein (Wasp) Stimulates Actin Nucleation by Arp2/3 Complex

We purified native WASp (Wiskott-Aldrich Syndrome protein) from bovine thymus and studied its ability to stimulate actin nucleation by Arp2/3 complex. WASp alone is inactive in the presence or absence of 0.5 microM GTP-Cdc42. Phosphatidylinositol 4,5 bisphosphate (PIP(2)) micelles allowed WASp to activate actin nucleation by Arp2/3 complex, and this was further enhanced twofold by GTP-Cdc42. Fi...

متن کامل

The Interaction between N-WASP and the Arp2/3 Complex Links Cdc42-Dependent Signals to Actin Assembly

Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg ext...

متن کامل

Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells.

Members of the WASP/WAVE family of proteins are key regulators of cytoskeletal reorganization across a diverse range of cellular processes. Despite a wealth of biochemical data about WASP/WAVE regulation in vitro, our understanding of the in vivo regulation of these proteins is hampered by the inability to monitor subcellular regulation of their activities in living cells. Here we establish a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2000